ANFISGA -Adaptive Neuro-Fuzzy Inference System Genetic Algorithm
نویسنده
چکیده
s In optimization, when the genetic algorithm fails to find the global optimum, the problem is often credited to premature convergence. Premature convergence is influenced by different parameters. One of the important parameters is diversity population. In this study, we use a novel method to keep diversity in population. A new technique for choosing the female chromosome during sexual selection in a genetic algorithm is proposed. A bi-linear allocation lifetime approach is used to label the chromosomes based on their fitness value. The label will then be used to characterize the diversity of the population. During the sexual selection, the male chromosome is selected randomly. The label of the selected male chromosome and the population diversity of the previous generation are then applied within a set of fuzzy rules and Adaptive Neuro-Fuzzy Inference System Genetic Algorithm to select a suitable female chromosome for recombination. Extensive computational experiments are conducted to assess the performance of the proposed technique with some commonly used sexual selection mechanisms found in a standard GA for solving some numerical functions from the literature. The computational results show that the proposed technique produces higher solutions quality compared to others.
منابع مشابه
Adaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کامل